Monitoring Testbed Experiments with MonEx

Abdulqawi Saiff*, Alexandre Merlinf, Lucas Nussbaum', Ye-Qiong Song'
1 Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
1 Qwant Entreprise, F-88000 Epinal, France

Abstract

Almost all testbed experiments deal with different kinds of metrics which are collected
from and/or about various kinds of resources. Despite the importance of collecting experi-
ment metrics in the experiment life cycle, this phase is often done via ad hoc, manual, and
artisanal actions such as manually combining multiple scripts, or manipulating some missing
values. A few tools (e.g. Vendetta, OML) can be used for monitoring experiments. However
their work is restricted to communicating metrics towards a central server, and they do not
cover different features from user perspective such as drawing and archiving experiments
results.

In this talk, we will firstly discuss the requirements of experiment monitoring. Having a
well-defined set of requirements eliminates the potential ambiguity around what should be
targeted by any Experiment Monitoring Framework (EMF). The defined requirements are
not testbed dependent nor technology-dependent, so any testbed community can build their
own EMF by implementing these requirements, using different software systems.

We will then describe our own proposition, MonEx" (for long: Monitoring Experiments),
which is an EMF that satisfies all the defined requirements. MonEx is built over several
off-the-shelf infrastructure monitoring tools, and supports various monitoring approaches
such as pull- and push-based monitoring, agent-based and agent-less monitoring. MonEx
covers all the required steps of monitoring experiments from collecting metrics to archiving
experiments data and producing figures.

We will then demonstrate MonEx’s usability through a set of experiments?, performed
on the Grid’5000 testbed and being monitored by MonEx. Each of those experiments have
different requirements, and as a group they show how MonEx meets all defined requirements.
We show how MonEx nicely integrates the experimental workflow and how it simplifies the
monitoring task, reducing the efforts of users during experimentation and pushing towards
the repeatability of experiments’ analysis and metrics comparison.

! MonEx paper was submitted to INFOCOM18 WKSHPS CNERT ’18 and is pending re-submission
2A live demo could be given during this talk

MonEXx: an Integrated Experiment Monitoring
Framework Standing on Off-The-Shelf Components

Abdulqawi Saif*T*$ Alexandre Merlin*T¥, Lucas Nussbaum*'¥, Ye-Qiong Song* 1%
* Inria, Villers-les-Nancy, France
T Université de Lorraine, France
1 CNRS, LORIA - UMR 7503, France
§ Qwant Entreprise, France

Abstract—Most computer science experiments include a phase
where metrics are gathered from and about various kinds of
resources. This phase is often done via ad hoc scripts and manual
steps, a time-consuming and error-prone process. In this paper,
we firstly define the requirements of experiments monitoring,
eliminating the ambiguity of what should be targeted by an
Experiment Monitoring Framework (EMF). We then propose
MonEx, an EMF that satisfies the defined requirements, and
reduces experimenters’ efforts during experiments. MonEx is
built on top of off-the-shelf, state-of-the-art infrastructure moni-
toring solutions to support the various monitoring approaches. It
fully integrates into the experiment workflow by encompassing
all steps from data acquisition to producing publication-quality
figures for each part of an experiment campaign.

Index Terms—experiment monitoring, experimentation, met-
rics, visualization, Prometheus, InfluxDB

I. INTRODUCTION

Most computer science experiments involve a phase of
data acquisition, during which metrics are collected about
the system under study. This phase has a central role in
the experimental process. First, it is the conclusion of the
experiment per-se, after the steps of experiment design, setup,
and execution. But the collected raw data is also the starting
point for the phase of data analysis that should lead to
trustworthy, reproducible and ultimately publishable results.

Given its central and crucial role in experimental methodol-
ogy, one would expect data acquisition to be performed with
advanced, well-designed solutions, that fully integrate in the
experiment workflow, maximize support for reproducibility of
experiments, and limit the risk of user errors. However, in
practice, experimenters often resort to ad hoc, manual, and
artisanal solutions, such as writing dumps or logs, gathering
them manually, and then parsing them using custom scripts.

Of course, most testbeds already use a monitoring service
that provides an overview of resources status and usage to
system administrators, in order to alert them when things
go wrong. As a testbed designer or operator, it might be
tempting to think that such a service could be repurposed as
a more generic service, suitable to experiment monitoring and
collection of metrics during experiments. However, as we will
show in this paper, those infrastructure monitoring services
fail to meet all the requirements of experiment monitoring.

Instead, in this paper, we propose to base off some of
the most modern solutions for infrastructure monitoring in

order to build an integrated Experiment Monitoring Framework
(EMF), MonE (Monitoring Experiments), that fully covers
all requirements for experiment monitoring, and nicely inserts
into the experiment workflow.

This paper is organized as follows. In Section [II, we dis-
cuss the specific requirements and challenges for monitoring
testbed experiments. We then analyze the positioning of related
work in Section MonEx is described in Section before
being featured in use case experiments (Section [V). Finally,
we conclude with Section [VII

II. REQUIREMENTS AND CHALLENGES

An ideal Experiment Monitoring Framework (EMF) should
meet a number of requirements, which are detailed below.
Experiment-focused. The notion of Experiment should be
central in the EMF. It should keep track of experiments’ name
or identifier, start time, end time, and list of associated metrics.
This should allow to maintain an overview of the different
experiments performed by the same or different users.
Independent of experiments. An EMF should support a wide
range of experiments, regardless of the number of metrics, the
frequency of measurements, or the software or services being
monitored. Furthermore, it should not be needed to alter the
system under test for it to be monitored by such a tool. This
helps to reproduce the experiment on other testbeds even if
the EMF is absent.

Independent of testbed services and experiment manage-
ment frameworks. Building the monitoring facility into the
core testbed services or management framework, as an all-in-
one solution, has some advantages. However, an EMF should
ideally maintain a high level of independence from such
services to facilitate porting experiments to other testbeds,
or monitoring experiments on federations of heterogeneous
testbeds.

Scalability. An EMF should scale to a large number of
monitored resources, to a large number of metrics, and to high-
frequency of measurements, in order to allow understanding
fine-grained phenomena (at the millisecond scale), or phenom-
ena that only occur with hundreds or thousands of nodes.
Low impact. The EMF should have a low impact on the
resources involved in the experiment in order to avoid the

Uhttps://github.com/madynes/monex| (tutorial provided)

https://github.com/madynes/monex

TABLE I
IDENTIFIED REQUIREMENTS FOR EXPERIMENT MONITORING (SECTION[[I)) vS RELATED WORK (SECTION [II))

Infrastructure monitoring
tools e.g. Munin

Testbed-provided

. Vendetta[/1]]
measurement services

OML2]

Experiment-focused

Independent of experiments
Independent of testbeds services
Scalability

Low impact

Easy deployment

Controllable

Real-time monitoring

Producing publication-quality figures
Archival of data

e

ot
14+ 4
I

observer effect (the addition of monitoring causing significant
changes to the experiment’s results).

Easy deployment. An EMF should not depend on complex
or specific testbed infrastructure. It should be easy to deploy
over any networking or distributed testbeds without tedious
configuration.

Controllable. An EMF should be flexible and controllable by
the testbed users. Users should have the choice to enable or
disable the monitoring of their experiments at any time, and
to select metrics, e.g. in order to limit or evaluate the impact
of the EMF on the experiment.

Real-time monitoring. The EMF should provide real-time
feedback during the experiment execution, to allow the early
detection of issues in long-running experiments.

Producing publication-quality figures. The EMF should
integrate the final step of the experiment life-cycle, that is
turning results into publishable material, with minimal addi-
tional effort.

Archival of data. Saving and exporting the experimental
metrics of a given experiment is important to allow for future
analysis of the data. It is also a basis for allowing distribution
in an open format to enable others to repeat the analysis.

III. RELATED WORK

To distinguish from previous works, we describe the state of
the art of infrastructure monitoring tools, testbed measurement
services, and experiment monitoring frameworks.

Infrastructure monitoring tools: Infrastructure monitor-
ing is a frequent need for system administrators, to track re-
sources utilization, errors, and get alerted in case of problems.
Many infrastructure tools exist, from the ancestor MRTG [3]],
to Munin, Nagios, Collectd, Ganglia [4], Zabbix [3], or Cacti.
These tools differ in terms of design choices such as protocols
used to query resources, use of remote agents to collect and
export metrics, or the way of collecting and storing data
(push vs pull). However, they all target the monitoring of
long-term variations of metrics, and thus are designed for
relatively long intervals between measurements (typically 5
to 10 minutes). They don’t scale well to shorter intervals,
which makes them unsuitable for monitoring fine-grained
phenomas during experiments. Additionally, most of them rely
on RRDtool to store metrics and generate figures, which is a

suitable tool for the infrastructure monitoring use case, but not
well suited at all for generating publication-quality figures.

More recently, with the emergence of elasticity and cloud
infrastructures, more modern infrastructure monitoring tools
were designed, such as Google’s Borgmon, Prometheus or
InfluxDB. Such tools are used in [[6] to propose a way to
reduce the heavy costs of using agent exporters for monitoring
in the cloud, by using SNMP with Prometheus to build an
agent-less monitoring system. In Sec [[V|] we will describe our
own effort to base off those solutions as the foundations for
an experiment monitoring framework.

Testbed-provided measurement services: Some testbeds
provide services to expose some metrics that would otherwise
not be available to experimenters. For example, the Grid’5000
testbed [7] provides Kwapi [8] for network traffic and power
measurements, collected respectively at the network equipment
and at the power distribution unit. PlanetLab [9] used COMon
to expose statistical information about the testbed nodes and
the reserved slices. In general, these services are limited to
very specific metrics. Thus, experimenters have no permission
to add their own metrics or to otherwise customize these
services for their experiments. Those services should rather
be considered as potential additional sources of information
for an experiment monitoring framework.

Experiment Monitoring Framework: There are very few
attempts at providing frameworks that address the specific
needs of experimentation. One of these attempts is Vendetta[ll]]
which is a simple monitoring and management tool for dis-
tributed testbeds. It runs an agent code on every node to
be monitored to parse the experiment events before sending
the results to the central sever which does the visualization
mission. Vendetta has no mechanism to implement the starting
and the ending time of experiments, so the researcher must
manually track the experimental timing in order to extract the
collected metrics. In addition, there is no functional separation
between the client part and the monitoring server, as the client
node restarts the monitoring server (running on another node)
in case of lack of response, which could be problematic in
some cases.

Another solution is OML [2f], [10] (ORBIT Measurement
Library), which is closely related to the OMF [L1] testbed

Experiments running on a testbed

MonFEz: Experiment Monitoring Framework

(Data collectors

§= G

— Prometheus
metrics]
i A I Collects data —1

~E— @@= OR
Push or Pull
InfluxDB

metrics ~——
—
K\ S

~

MonEx server

[MonEx figures creator

An
bGrdfz}na L experimenter
(Real-time visualization)

J

Fig. 1. Overall design of the MonEx EMF

management framework. With OML, the various components
of the experiment stream their measurements, obtained from
the monitored applications, towards an OML server. The
server creates an SQL database to store the metrics of each ex-
periment. The process of using OML is experiment-dependent:
several steps are required to modify the experimental code
to define the measurement points. In addition, the OML
server does not provide real-time monitoring — the only way
to access the metrics is to query the experiment database.
Overall, OML has seen rather low adoption, even if some
testbeds like Fibre [12]], IOT-Lab, or NITOS [13] support it.
Its development seems to have been stalled (last changes on
GitHub in 2015).

In Tab. [we compare the tools presented here with the
requirements discussed in Sec. |lI} As can be seen, the existing
tools fail to match all requirements, which triggered the design
of our own solution, described in the next section.

IV. MonEx DESIGN

This section introduces MonEx, our integrated Experiment
Monitoring Framework (Fig. [I). Inspired by the Popper con-
vention [14], we reuse some off-the-shelf monitoring tech-
nologies that fit into MonEx design rather than making new
ones, and then build on top of them to adjust to the specific
requirements of experiment monitoring. Thus, Prometheus and
InfluxDB are used as data collectors while Grafana is used for
real-time visualization. But those off-the-shelf components are
complemented with custom-built components. First, MonEx
server brings the experiment process to the monitoring solu-
tion, by enabling the experimenter to specify the experiments’
start and end time in order to link metrics to specific experi-
ments (allowing the extraction of an experiment’s metrics, or
to refer to a specific experiment for analysis or comparison
purposes). Second, MonEx figures-creator makes it possible
to automatically extract metrics for a specific experiment, and
create publishable figures.

The typical workflow of using MonEx is as follows: after
setting up an experiment, two calls to the MonEXx server are
issued at the beginning and the end of that experiment, to
allow specifying the experiment time boundaries. The server
also deals with the experimenters requests to query their
experiments. Prometheus and InfluxDB are used to retrieve the

experiment metrics from the execution environment, represent-
ing the main data source of MonEx. Hence, experiments can
use an appropriate monitoring technique (e.g. agent or agent-
less monitoring, and pull or push monitoring) for exchanging
metrics with Prometheus or InfluxDB. Furthermore, Grafana
is used to visualize the experiment metrics at runtime by
connecting to the data collectors as a consumer. At last, when
the experiment is accomplished, MonEx server is able to
produce an output file containing the target metrics of a given
experiment. Eventually, MonEx figures-creator either exploits
that file (e.g. in case of running in another environment), or
connects directly to the MonEx server in order to generate
publishable figures.

The components of MonEx are described in detail in the
following sections.

A. MonEXx server

MonEx HTTP server is built to handle the time bound-
aries of experiments as well as manipulating their metrics.
It exposes different interfaces to receive notifications about
the start and the end time of experiments, to query the
experiments metrics, and to remove experiments from its list.
Each experiment sends at least two HTTP requests: start_xp to
indicate its intention to use MonEXx, bringing also a name for
this experiment to be distinguished by, end_xp to notify the
server about the experiment termination time. The requests
could be integrated inside the experiment code to be more
dynamic when declaring the time boundaries, especially for
short-length experiments. MonEx server is also used to query
the experiment metrics using get_xp request. This request asks
the MonEx server to expose the wanted metrics into a CSV
file. For example, to export a metric named mymetric of the
experiment myexp into a CSV file, the following command
could be used:

curl "htttp://MonExServer:5000/exp/myexp"
-H "Content-Type: application/Jjson"
-X GET -d '{"metric":"mymetric"}’

MonEx server requires a configuration file which tells about
the data collector in use. This helps to send specific commands
during communication. The server could also connect to sev-
eral instances of the data collectors simultaneously, enabling

experimenters to interact with multiple data collectors (e.g.
experiments running in different physical sites of the same
testbed where each site provides its own data collector).

We tried to implement a control metric when using
Prometheus in order to handle the works of MonEx server.
However, this alternative has various limitations. Firstly, it
will not scale as every experiment will require an independent
instance of Prometheus to decode the added control metric.
Thus, it will be difficult to have a service for monitoring
experiments made available to all testbed users. Secondly,
it limits the use of the underlaying monitoring system to
only Prometheus, ignoring the experiments that use other
collectors. Thirdly, even if Prometheus has a lot of ready-
to-use exporters, modifying each of them by adding control-
metrics will prevent experimenters from using them directly.
Taking these limitations into account, we choose to keep track
of experiments via a dedicated server.

B. Experiments data collectors

MonEx supports the use of either Prometheus or InfluxDB
in order to cover all monitoring techniques. Prometheus is
a monitoring system with alerting and notification services
and a powerful querying language which allows creating
compound metrics from existing ones. It is optimized to
pull numerical metrics into a central server, but not to scale
horizontally or to support non numerical metrics as InfluxDB
does. InfluxDB is a chronological time series database for
storing experimental metrics with a timestamp resolution that
scales from milliseconds to nanoseconds. In MonEx, both
could be mutually or even simultaneously used regarding the
experiment need. Indeed, they provide similar services, but
with some differences, as detailed in Tab. [[}

Although Prometheus is the default data collector in
MonEZx, its differences with InfluxDB favorite this latter for
specific use cases. Firstly, InfluxDB fits better for the exper-
iments that send their metrics in variable-time intervals since
Prometheus still needs to pull the data regarding his scraping
interval (even if that makes no sense for the experiment).
For example, pulling the metrics every one second is not
significant for the experiment that generates its data at random
time intervals, so pushing them into InfluxDB whenever the
experiment has new data is more preferable. Secondly, as
it follows the pull-based approach, Prometheus is not able
to collect data from the experiments with high frequency
measurements since its scraping interval does not go beyond
one second (it is also true if Prometheus-Pushgateway is
used along with Prometheus). Thus, using InfluxDB, which
supports pushing data at high scale, is a robust solution to
prevent any data loss during such experiments.

C. MonEXx figures-creator

This component is essential to exploit the monitoring results
for creating publishable figures. It is a tool that deals with the
export of an experiment’s data from MonEx into a format

2This feature is provided in the commercial version of InfluxDB

TABLE II
COMPARISON OF PROMETHEUS AND INFLUXDB FEATURES

Prometheus InfluxDB

Data collection
technique

Pull, push also possible via

Prometheus-Pushgateway Push

numerical, strings,
and boolean metrics

Supported data

numerical metrics
types

from milliseconds
to nanoseconds

Yes, clustelE] of
InfluxDB

Supported resolution up to one second

not really, only using

Horizontal scalability independent servers

Generate derived

. . Yes No
time series

(CSV) that is widely supported by tools typically used to
prepare figures (R’s ggplot, gnuplot, matplotlib, pgfplot, etc.).
It also includes direct support for generating figures using R,
covering a wide range of standard figures (e.g. X-Y figures,
stack figures, multiple-Y figures, ..., etc).

D. Real-time visualization

MonEx uses Grafana for real-time visualization using a
modern web-based interface. Grafana, which works on time
series, consumes the available metrics collected by Prometheus
and InfluxDB. However, the experiments with high frequency
measurements trigger a trade-off with the real-time visual-
ization as they might impact the experiment resources by
producing a massive volume of data. Thus, such experiments
should be configured either to push its metrics entirely at the
end, making this service totally unusable, or to push them
over periodic chunks to still benefiting from this service with
a reduced precision.

V. USE CASE EXPERIMENTS

This section demonstrates MonEx efficiency as an EMF
over three experimentsﬂ highlighting how it covers all the re-
quirements listed in Section [l All experiments are performed
on the Grid’5000 testbed (grisou cluster).

A. Disk & Power Usage of a MongoDB cluster

The goal of this experiment is to evaluate the disk utilization
and the power usage of a sharded cluster of MongoDB (three
shards are used), while performing an indexing workload over
a Big Data collection (80 GB).

Prometheus SNMP Exporter & Prometheus node exporter
are used to tackle the cluster power consumption and the disk
utilization metrics, respectively. On the one hand, Prometheus
SNMP Exporter is using SNMP on the power distribution
units (PDUs) to obtain the power per outlet. It involves
adding the PDUs addresses to the exporter configuration file
for being able to query all nodes outlets. Given that, the
exporter becomes able to get the power of the cluster machines
regardless that it is only installed on one machine (agent-
less monitoring). This reduces the impact on the environment

3The artifacts and datasets are provided on the MonEx github page

Disk Utilization (%)

Power (Watt)

(a) Real-time monitoring using Grafana. The dotted, vertical line

Disk utilization (%)
0 20 40 60 80 100

)

Power usage (W
120 130 140 150

400
Time (sec)

o4
N
o4
o

(b) Figure produced by MonEx figures-creator

indicates the start time of the experiment. Obviously, such figures would not

meet the expectations of scientific publications

Fig. 2. Disk utilization affecting the power consumption while indexing data over a three-nodes cluster of MongoDB

as it asks a PDU for a bunch of outlets rather than issuing
one request per outlet. One the other hand, Prometheus node
exporter is installed on each machine (agent monitoring) to
report the disk usage per machine.

To allow using MonEx for monitoring this experiment, only
two instructions are added into the experiment script in order
to notify MonEx about its start and the end time. As shown
in Fig. P}a, we can check in real-time how our experiment is
behaving. This helps as a safety step for detecting issues that
might require to restart the experiment. In addition, we obtain
our target metrics by sending a customized get xp request
to the MonEx server. MonEXx figures-creator is then used to
generate a publishable figure that contains the target metrics.
Fig. 2}b contains three colored curves that represent the disk
utilization and the power usage of the three-nodes cluster.

B. Many-nodes Bittorrent download

This experimenﬂ aims at using MonEx while revisiting the
torrent experiment covered in [15]], in order to monitor the
completion of a given torrent file. A seeder with a 500 MB file
is created and multiple peers (from 1 to 100) seek to download
the target file. A mesh topology is used for connecting the
seeder/peers, while OpenTracker, Transmission are used as a
torrent tracker, and a torrent client for the peers, respectively.
The network and the peers are emulated by Distem [16], so
the experiment runs independently from the testbed topology.
Eleven physical machines are used in this emulation: ten peers
per machine and the last machine is reserved for the tracker.

4This experiment could serve as a good basis for a live demo of MonEx’s
capabilities during the CNERT presentation

The seeder bandwidth is limited to 5 KB/s while this of peers
is limited to 30 KB/s. Each peer resides on a virtual node, and
all nodes are increasingly connected with a constraint that a
new peer is entering the network every 4 seconds until the
number of peers reaches its maximum (100 peers).

The experiment begins when the seeder starts to share the
target file by signaling it to the tracker, and it terminates when
all peers will have that file. To obtain the completion of the
target file, we use the Transmission API, and we create our
own metrics exporter (about 10 lines of Python), because the
metrics of this experiment are very specific. The exporter is
instantiated to run on each virtual node, while Prometheus
pulls periodically their data. MonEx has a minimal impact on
the experiment resources as there is another dedicated VLAN
in use for the monitoring traffic. Furthermore, this experiment
shows how MonEx is scalable, as Prometheus is able to pull
the experiment metrics from about a hundred of nodes without
any overflow.

MonEx is then used either to produce a CSV file containing
the experiment metrics selected by the experimenter, or to
obtain directly a ready-to-publish graph, as shown in Fig. [3]

C. Time-independent metrics: input/output offsets sequences

The goal of this experiment is to evaluate how a data file
is accessed during a workload. To do so, we use the Fio
benchmark to generate an access pattern over a given file,
and we create an extended Berkley Packet Filter (eBPF) tool
to uncover this access pattern. Thus, our target metric is the
file offsets. If the access is random, we are expecting to see
a shapeless view of this metric, indicating that the offsets are
not increasing sequentially with every incoming I/O request.

0.6 0.8 1.0

Completion
0.4

0.2

0 200 400 600
Time (sec)

Fig. 3. Torrent completion of a 500 MBytes file on a slow network with one
initial seeder and 100 peers entering the network over time (one line per peer)

This experiment is challenging in both scalability and con-
trollability. Firstly, a pull-based monitoring method cannot be
used since the experiment has high frequency measurements,
thus a scraping interval even of one second might not catch all
events (data exposed to be lost). Secondly, the target metric
(file offsets) does not rely on the execution time and the
timestamps, but rather on the order of I/O requests accessing
the file, hence every I/O request is significant for understand-
ing the overall access pattern. For these two reasons, we use
InfluxDB rather than Prometheus. We locally collect each
I/O request that targets a specific offset on the file, dealing
with high rate of I/O requests (about thousands per second).
Then, we decide to push all of them at once to InfluxDB
at the end of experiment. MonEx represents the experiment
results as shown in Fig. 4| The figure shows that the file is
randomly accessed as the scatter points of the I/O requests do
not represent a diagonal line over the file offset.

VI. CONCLUSIONS

In this paper, we firstly defined the needed requirements to
build an experiment monitoring framework (EMF). We then
leveraged these requirements and some recent infrastructure
monitoring solutions to introduce the MonEx EMF. Through
use cases, we showed how MonEx reduces the experimenters’
effort by encompassing all the steps from collecting metrics
to producing publication quality figures, leaving no places for
manual and ad hoc steps that were used to be performed in
practice.

MonEx has two impacts on the way we perform experi-
ments. Firstly, it pushes towards the repeatability of exper-
iments’ analysis and metrics comparison. That is thanks to
its abilities to separate the phase of collecting metrics from
experiments, and to archive them per experiment. Secondly,
as MonEx puts the experiment at the center of the monitoring
workflow, focusing on how the experiment results are obtained

1.0e+08

File offset (bytes)

5.0e+07

0.0e+00

0 5000 10000 15000 20000 25000 30000
I/O request (sample)

Fig. 4. 1/O access pattern of a 140 MBytes file read using randread mode of
the fio benchmark. Each access offset is recorded and returned by the Linux
kernel executing an eBPF program

rather than where the experiment runs, we are a step closer to
better experiment portability and reproducibility.

REFERENCES

[11 O. Rensfelt, L.-A. Larzon, and S. Westergren, “Vendetta — a tool
for flexible monitoring and management of distributed testbeds,” in
TridentCom, 2007.

[2] M. Singh, M. Ott, I. Seskar, and P. Kamat, “Orbit measurements
framework and library (oml): motivations, implementation and features,”
in Tridentcom, 2005.

[3] T. Oetiker and D. Rand, “Mrtg: The multi router traffic grapher.” in
LISA, vol. 98, 1998, pp. 141-148.

[4] M. L. Massie et al., “The ganglia distributed monitoring system: design,
implementation, and experience,” Parallel Computing, 2004.

[5]1 R. Olups, Zabbix 1.8 network monitoring. Packt Publishing Ltd, 2010.

[6] M. Brattstrom and P. Morreale, “Scalable agentless cloud network
monitoring,” in Cyber Security and Cloud Computing (CSCloud), 2017.

[7]1 D. Balouek et al., “Adding virtualization capabilities to the Grid’5000
testbed,” in Cloud Computing and Services Science, ser. Communica-
tions in Computer and Information Science, 2013, vol. 367, pp. 3-20.

[8] F. Clouet ef al., “A unified monitoring framework for energy consump-
tion and network traffic,” in TRIDENTCOM, 2015.

[9] B. Chun et al., “Planetlab: an overlay testbed for broad-coverage
services,” ACM SIGCOMM Computer Communication Review, 2003.

[10] |https://github.com/mytestbed/oml, “Orbit measurement library.”

[11] T. Rakotoarivelo, M. Ott, G. Jourjon, and I. Seskar, “Omf: a control
and management framework for networking testbeds,” ACM SIGOPS
Operating Systems Review, vol. 43, no. 4, pp. 54-59, 2010.

[12] T. Salmito, L. Ciuffo, I. Machado et al., “Fibre-an international testbed
for future internet experimentation,” in Simpdsio Brasileiro de Redes de
Computadores e Sistemas Distribuidos, 2014.

[13] D. Giatsios, A. Apostolaras, T. Korakis, and L. Tassiulas, “Methodology
and tools for measurements on wireless testbeds: The nitos approach,”
in Measurement Methodology and Tools. Springer, 2013, pp. 61-80.

[14] 1. Jimenez, M. Sevilla et al., “The popper convention: Making re-
producible systems evaluation practical,” in Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 2017.

[15] L. Nussbaum and O. Richard, “Lightweight emulation to study peer-to-
peer systems,” Concurrency and Computation: Practice and Experience,
vol. 20, no. 6, pp. 735-749, 2008.

[16] L. Sarzyniec, T. Buchert, E. Jeanvoine, and L. Nussbaum, “Design
and Evaluation of a Virtual Experimental Environment for Distributed
Systems,” in PDP2013 - 21st Euromicro International Conference on
Farallel, Distributed and Network-Based Processing.

https://github.com/mytestbed/oml

